Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
ACS Nano ; 18(8): 6623-6637, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38348825

RESUMEN

Cell-free RNAs and extracellular vesicles (EVs) are valuable biomarkers in liquid biopsies, but they are prone to preanalytical variabilities such as nonstandardized centrifugation or ex vivo blood degradation. Herein, we report a high-throughput and label-free inertial microfluidic device (ExoArc) for isolation of platelet-free plasma from blood for RNA and EV analysis. Unlike conventional inertial microfluidic devices widely used for cell sorting, a submicrometer size cutoff (500 nm) was achieved which completely removed all leukocytes, RBCs, platelets, and cellular debris based on differential lateral migration induced by Dean vortices. The single-step operation also reduced platelet-associated miRNAs (∼2-fold) compared to centrifugation. We clinically validated ExoArc for plasma miRNA profiling (39 samples) and identified a 7-miRNA panel that detects non-small cell lung cancer with ∼90% sensitivity. ExoArc was also coupled with size exclusion chromatography (SEC) to isolate EVs within 50 min with ∼10-fold higher yield than ultracentrifugation. As a proof-of-concept for EV-based transcriptomics analysis, we performed miRNA analysis in healthy and type 2 diabetes mellitus (T2DM) subjects (n = 3 per group) by coupling ExoArc and ExoArc+SEC with quantitative polymerase chain reaction (RT-qPCR) assay. Among 293 miRNAs detected, plasmas and EVs showed distinct differentially expressed miRNAs in T2DM subjects. We further demonstrated automated in-line EV sorting from low volume culture media for continuous EV monitoring. Overall, the developed ExoArc offers a convenient centrifugation-free workflow to automate plasma and EV isolation for point-of-care diagnostics and quality control in EV manufacturing.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , Neoplasias Pulmonares , MicroARNs , Humanos , MicroARNs/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Microfluídica , Neoplasias Pulmonares/metabolismo , Vesículas Extracelulares/metabolismo
2.
Autophagy Rep ; 3(1)2024.
Artículo en Inglés | MEDLINE | ID: mdl-38370394

RESUMEN

Human fetal membranes (amniochorion) that line the intrauterine cavity consist of two distinct cell layers; single-layer amnion epithelial cells (AEC) and multilayer chorion trophoblast cells (CTC). These layers are connected through a collagen-rich extracellular matrix. Cellular remodeling helps support membrane growth and integrity during gestation and helps to maintain pregnancy. Preterm prelabor rupture of the human amniochorionic (fetal) membrane (pPROM) is antecedent to 40% of all spontaneous preterm birth. Oxidative stress (OS) induced activation of the p38 MAPK due to various maternal risk exposures and the amniochorion cells' senescence are reported pathological features of pPROM. Our transcriptomics analysis implicated dysregulated autophagy and epithelial-mesenchymal transition (EMT) in fetal membranes from pPROM. The molecular interplay between OS-induced p38 MAPK activation, autophagy, and EMT was investigated in AECs and CTCs to better understand the involvement of autophagy and EMT. We report the differential impact of OS on the autophagic machinery in AECs and CTCs, resulting in distinct cell fates. In AECs, OS-induced p38 MAPK activation causes autophagosome accumulation and reduced autophagic flux mediated by decreased ULK1 activity and kinase activity, leading to senescence. In CTCs, induction of autophagy has a limited effect; however, inhibition of autophagy led to SQSTM1-mediated EMT of trophoblast cells. Autophagy, EMT, and senescence were associated with proinflammatory changes. Thus, AECs and CTCs respond differently to OS via differential autophagy response, partly mediated via p38 MAPK. Besides senescence, OS-induced autophagy dysregulation in amniochorion cells may play a mechanistic role in pPROM pathophysiology.

3.
Biol Reprod ; 110(5): 950-970, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38330185

RESUMEN

Research on the biology of fetal-maternal barriers has been limited by access to physiologically relevant cells, including trophoblast cells. In this study, we describe the development of a human term placenta-derived cytotrophoblast immortalized cell line (hPTCCTB) derived from the basal plate. Human-term placenta-derived cytotrophoblast immortalized cell line cells are comparable to their primary cells of origin in terms of morphology, marker expression, and functional responses. We demonstrate that these can transform into syncytiotrophoblast and extravillous trophoblasts. We also compared the hPTCCTB cells to immortalized chorionic trophoblasts (hFM-CTC), trophoblasts of the chorionic plate, and BeWo cells, choriocarcinoma cell lines of conventional use. Human-term placenta-derived cytotrophoblast immortalized cell line and hFM-CTCs displayed more similarity to each other than to BeWos, but these differ in syncytialization ability. Overall, this study (1) demonstrates that the immortalized hPTCCTB generated are cells of higher physiological relevance and (2) provides a look into the distinction between the spatially distinct placental and fetal barrier trophoblasts cells, hPTCCTB and hFM-CTC, respectively.


Asunto(s)
Placenta , Trofoblastos , Humanos , Trofoblastos/citología , Trofoblastos/fisiología , Femenino , Embarazo , Placenta/citología , Placenta/fisiología , Línea Celular
4.
Front Cell Dev Biol ; 11: 1256945, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808080

RESUMEN

Introduction: During pregnancy, fetal cells can be incorporated into maternal tissues (fetal microchimerism), where they can persist postpartum. Whether these fetal cells are beneficial or detrimental to maternal health is unknown. This study aimed to characterize fetal microchimeric immune cells in the maternal heart during pregnancy and postpartum, and to identify differences in these fetal microchimeric subpopulations between normal and pregnancies complicated by spontaneous preterm induced by ascending infection. Methods: A Cre reporter mouse model, which when mated with wild-type C57BL/6J females resulted in cells and tissues of progeny expressing red fluorescent protein tandem dimer Tomato (mT+), was used to detect fetal microchimeric cells. On embryonic day (E)15, 104 colony-forming units (CFU) E. coli was administered intravaginally to mimic ascending infection, with delivery on or before E18.5 considered as preterm delivery. A subset of pregnant mice was sacrificed at E16 and postpartum day 28 to harvest maternal hearts. Heart tissues were processed for immunofluorescence microscopy and high-dimensional mass cytometry by time-of-flight (CyTOF) using an antibody panel of immune cell markers. Changes in cardiac physiologic parameters were measured up to 60 days postpartum via two-dimensional echocardiography. Results: Intravaginal E. coli administration resulted in preterm delivery of live pups in 70% of the cases. mT + expressing cells were detected in maternal uterus and heart, implying that fetal cells can migrate to different maternal compartments. During ascending infection, more fetal antigen-presenting cells (APCs) and less fetal hematopoietic stem cells (HSCs) and fetal double-positive (DP) thymocytes were observed in maternal hearts at E16 compared to normal pregnancy. These HSCs were cleared while DP thymocytes persisted 28 days postpartum following an ascending infection. No significant changes in cardiac physiologic parameters were observed postpartum except a trend in lowering the ejection fraction rate in preterm delivered mothers. Conclusion: Both normal pregnancy and ascending infection revealed distinct compositions of fetal microchimeric immune cells within the maternal heart, which could potentially influence the maternal cardiac microenvironment via (1) modulation of cardiac reverse modeling processes by fetal stem cells, and (2) differential responses to recognition of fetal APCs by maternal T cells.

5.
Front Pharmacol ; 14: 1241815, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37663251

RESUMEN

Introduction: Preterm birth rates and maternal and neonatal mortality remain concerning global health issues, necessitating improved strategies for testing therapeutic compounds during pregnancy. Current 2D or 3D cell models and animal models often fail to provide data that can effectively translate into clinical trials, leading to pregnant women being excluded from drug development considerations and clinical studies. To address this limitation, we explored the utility of in silico simulation modeling and microfluidic-based organ-on-a-chip platforms to assess potential interventional agents. Methods: We developed a multi-organ feto-maternal interface on-chip (FMi-PLA-OOC) utilizing microfluidic channels to maintain intercellular interactions among seven different cell types (fetal membrane-decidua-placenta). This platform enabled the investigation of drug pharmacokinetics in vitro. Pravastatin, a model drug known for its efficacy in reducing oxidative stress and inflammation during pregnancy and currently in clinical trials, was used to test its transfer rate across both feto-maternal interfaces. The data obtained from FMi-PLA-OOC were compared with existing data from in vivo animal models and ex vivo placenta perfusion models. Additionally, we employed mechanistically based simulation software (Gastroplus®) to predict pravastatin pharmacokinetics in pregnant subjects based on validated nonpregnant drug data. Results: Pravastatin transfer across the FMi-PLA-OOC and predicted pharmacokinetics in the in silico models were found to be similar, approximately 18%. In contrast, animal models showed supraphysiologic drug accumulation in the amniotic fluid, reaching approximately 33%. Discussion: The results from this study suggest that the FMi-PLA-OOC and in silico models can serve as alternative methods for studying drug pharmacokinetics during pregnancy, providing valuable insights into drug transport and metabolism across the placenta and fetal membranes. These advanced platforms offer promising opportunities for safe, reliable, and faster testing of therapeutic compounds, potentially reducing the number of pregnant women referred to as "therapeutic orphans" due to the lack of consideration in drug development and clinical trials. By bridging the gap between preclinical studies and clinical trials, these approaches hold great promise in improving maternal and neonatal health outcomes.

6.
Front Immunol ; 14: 1196453, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600782

RESUMEN

Background: Fetal inflammatory response mediated by the influx of immune cells and activation of pro-inflammatory transcription factor NF-κB in feto-maternal uterine tissues is the major determinant of infection-associated preterm birth (PTB, live births < 37 weeks of gestation). Objective: To reduce the incidence of PTB by minimizing inflammation, extracellular vesicles (EVs) were electroporetically engineered to contain anti-inflammatory cytokine interleukin (IL)-10 (eIL-10), and their efficacy was tested in an ascending model of infection (vaginal administration of E. coli) induced PTB in mouse models. Study design: EVs (size: 30-170 nm) derived from HEK293T cells were electroporated with recombinant IL-10 at 500 volts and 125 Ω, and 6 pulses to generate eIL-10. eIL-10 structural characters (electron microscopy, nanoparticle tracking analysis, ExoView [size and cargo content] and functional properties (co-treatment of macrophage cells with LPS and eIL-10) were assessed. To test efficacy, CD1 mice were vaginally inoculated with E. coli (1010CFU) and subsequently treated with either PBS, eIL-10 (500ng) or Gentamicin (10mg/kg) or a combination of eIL-10+gentamicin. Fetal inflammatory response in maternal and fetal tissues after the infection or treatment were conducted by suspension Cytometer Time of Flight (CyTOF) using a transgenic mouse model that express red fluorescent TdTomato (mT+) in fetal cells. Results: Engineered EVs were structurally and functionally stable and showed reduced proinflammatory cytokine production from LPS challenged macrophage cells in vitro. Maternal administration of eIL-10 (10 µg/kg body weight) crossed feto-maternal barriers to delay E. coli-induced PTB to deliver live pups at term. Delay in PTB was associated with reduced feto-maternal uterine inflammation (immune cell infiltration and histologic chorioamnionitis, NF-κB activation, and proinflammatory cytokine production). Conclusions: eIL-10 administration was safe, stable, specific, delayed PTB by over 72 hrs and delivered live pups. The delivery of drugs using EVs overcomes the limitations of in-utero fetal interventions. Protecting IL-10 in EVs eliminates the need for the amniotic administration of recombinant IL-10 for its efficacy.


Asunto(s)
Vesículas Extracelulares , Interleucina-10 , Complicaciones Infecciosas del Embarazo , Animales , Femenino , Humanos , Ratones , Embarazo , Citocinas , Modelos Animales de Enfermedad , Escherichia coli , Feto , Células HEK293 , Interleucina-10/farmacología , Lipopolisacáridos , FN-kappa B , Nacimiento Prematuro , Proteínas Recombinantes/farmacología , Inflamación , Complicaciones Infecciosas del Embarazo/tratamiento farmacológico
7.
Front Microbiol ; 14: 1213234, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37520380

RESUMEN

Introduction: The placenta is essential for fetal growth and survival and maintaining a successful pregnancy. The sterility of the placenta has been challenged recently; however, the presence of a placental microbiome has been controversial. We tested the hypothesis that the bacterial extracellular vesicles (BEVs) from Gram-negative bacteria as an alternate source of microbial DNA, regardless of the existence of a microbial community in the placenta. Methods: Placentae from the term, not in labor Cesareans deliveries, were used for this study, and placental specimens were sampled randomly from the fetal side. We developed a protocol for the isolation of BEVs from human tissues and this is the first study to isolate the BEVs from human tissue and characterize them. Results: The median size of BEVs was 130-140 nm, and the mean concentration was 1.8-5.5 × 1010 BEVs/g of the wet placenta. BEVs are spherical and contain LPS and ompA. Western blots further confirmed ompA but not human EVs markers ALIX confirming the purity of preparations. Taxonomic abundance profiles showed BEV sequence reads above the levels of the negative controls (all reagent controls). In contrast, the sequence reads in the same placenta were substantially low, indicating nothing beyond contamination (low biomass). Alpha-diversity showed the number of detected genera was significantly higher in the BEVs than placenta, suggesting BEVs as a likely source of microbial DNA. Beta-diversity further showed significant overlap in the microbiome between BEV and the placenta, confirming that BEVs in the placenta are likely a source of microbial DNA in the placenta. Uptake studies localized BEVs in maternal (decidual) and placental cells (cytotrophoblast), confirming their ability to enter these cells. Lastly, BEVs significantly increased inflammatory cytokine production in THP-1 macrophages in a high-dose group but not in the placental or decidual cells. Conclusion: We conclude that the BEVs are normal constituents during pregnancy and likely reach the placenta through hematogenous spread from maternal body sites that harbor microbiome. Their presence may result in a low-grade localized inflammation to prime an antigen response in the placenta; however, insufficient to cause a fetal inflammatory response and adverse pregnancy events. This study suggests that BEVs can confound placental microbiome studies, but their low biomass in the placenta is unlikely to have any immunologic impact.

8.
FASEB J ; 37(7): e23000, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37249377

RESUMEN

Oxidative stress (OS) and inflammation arising from cellular derangements at the fetal membrane-decidual interface (feto-maternal interface [FMi]) is a major antecedent to preterm birth (PTB). However, it is impractical to study OS-associated FMi disease state during human pregnancy, and thus it is difficult to develop strategies to reduce the incidences of PTB. A microfluidic organ-on-chip model (FMi-OOC) that mimics the in vivo structure and functions of FMi in vitro was developed to address this challenge. The FMi-OOC contained fetal (amnion epithelial, mesenchymal, and chorion) and maternal (decidua) cells cultured in four compartments interconnected by arrays of microchannels to allow independent but interconnected co-cultivation. Using this model, we tested the effects of OS and inflammation on both fetal (fetal → maternal) and maternal (maternal → fetal) sides of the FMi and determined their differential impact on PTB-associated pathways. OS was induced using cigarette smoke extract (CSE) exposure. The impacts of OS were assessed by measuring cell viability, disruption of immune homeostasis, epithelial-to-mesenchymal transition (EMT), development of senescence, and inflammation. CSE propagated (LC/MS-MS analysis for nicotine) over a 72-hour period from the maternal to fetal side, or vice versa. However, they caused two distinct pathological effects on the maternal and fetal cells. Specifically, fetal OS induced cellular pathologies and inflammation, whereas maternal OS caused immune intolerance. The pronounced impact produced by the fetus supports the hypothesis that fetal inflammatory response is a mechanistic trigger for parturition. The FMi disease-associated changes identified in the FMi-OOC suggest the unique capability of this in vitro model in testing in utero conditions.


Asunto(s)
Sistemas Microfisiológicos , Nacimiento Prematuro , Recién Nacido , Embarazo , Femenino , Humanos , Parto , Estrés Oxidativo , Inflamación
9.
J Immunol ; 210(9): 1437-1446, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36920387

RESUMEN

During human pregnancy the chorion (fetal) lines decidua (maternal) creating the feto-maternal interface. Despite their proximity, resident decidual immune cells remain quiescent during gestation and do not invade the chorion. Infection and infiltration of activated immune cells toward the chorion are often associated with preterm birth. However, the mechanisms that maintain choriodecidual immune homeostasis or compromise immune barrier functions remain unclear. To understand these processes, a two-chamber microphysiological system (MPS) was created to model the human choriodecidual immune interface under normal and infectious conditions in vitro. This MPS has outer (fetal chorion trophoblast cells) and inner chambers (maternal decidual + CD45+ cells [70:30 ratio]) connected by microchannels. Decidual cells were treated with LPS to mimic maternal infection, followed by immunostaining for HLA-DR and HLA-G, immune panel screening by imaging cytometry by time of flight, and immune regulatory factors IL-8 and IL-10, soluble HLA-G, and progesterone (ELISA). LPS induced a proinflammatory phenotype in the decidua characterized by a decrease in HLA-DR and an increase in IL-8 compared with controls. LPS treatment increased the influx of immune cells into the chorion, indicative of chorionitis. Cytometry by time of flight characterized immune cells in both chambers as active NK cells and neutrophils, with a decrease in the abundance of nonproinflammatory cytokine-producing NK cells and T cells. Conversely, chorion cells increased progesterone and soluble HLA-G production while maintaining HLA-G expression. These results highlight the utility of MPS to model choriodecidual immune cell infiltration and determine the complex maternal-fetal crosstalk to regulate immune balance during infection.


Asunto(s)
Nacimiento Prematuro , Progesterona , Embarazo , Femenino , Recién Nacido , Humanos , Interleucina-8/metabolismo , Antígenos HLA-G/metabolismo , Decidua , Lipopolisacáridos/metabolismo , Nacimiento Prematuro/metabolismo
10.
Mol Biol Rep ; 50(4): 3035-3043, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36662453

RESUMEN

BACKGROUND: Ureaplasma, a genus of the order Mycoplasmatales and commonly grouped with Mycoplasma as genital mycoplasma is one of the most common microbes isolated from women with infection/inflammation-associated preterm labor (PTL). Mycoplasma spp. produce sialidase that cleaves sialic acid from glycans of vaginal mucous membranes and facilitates adherence and invasion of the epithelium by pathobionts, and dysregulated immune response. However, whether Ureaplasma species can induce the production of sialidase is yet to be demonstrated. We examined U. parvum-infected vaginal epithelial cells (VECs) for the production of sialidase and pro-inflammatory cytokines. METHODS: Immortalized VECs were cultured in appropriate media and treated with U. parvum in a concentration of 1 × 105 DNA copies/ml. After 24 h of treatment, cells and media were harvested. To confirm infection and cell uptake, immunocytochemistry for multi-banded antigen (MBA) was performed. Pro-inflammatory cytokine production and protein analysis for sialidase confirmed pro-labor pathways. RESULTS: Infection of VECs was confirmed by the presence of intracellular MBA. Western blot analysis showed no significant increase in sialidase expression from U. parvum-treated VECs compared to uninfected cells. However, U. parvum infection induced 2-3-fold increased production of GM-CSF (p = 0.03), IL-6 (p = 0.01), and IL-8 (p = 0.01) in VECs compared to controls. CONCLUSION: U. parvum infection of VECs induced inflammatory imbalance associated with vaginal dysbiosis but did not alter sialidase expression at the cellular level. These data suggest that U. parvum's pathogenic effect could be propagated by locally produced pro-inflammatory cytokines and, unlike other genital mycoplasmas, may be independent of sialidase.


Asunto(s)
Neuraminidasa , Ureaplasma , Recién Nacido , Femenino , Humanos , Ureaplasma/genética , Células Epiteliales , Citocinas
11.
Am J Reprod Immunol ; 89(1): e13648, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36334089

RESUMEN

PROBLEM: Amniochorion senescence generates mechanistic signals to initiate parturition. Activation of p38 mitogen-activated kinase (MAPK) in fetal amnion cells is a key mediator of senescence as well as epithelial-mesenchymal transition (EMT) of amnion cells. However, the impact of p38 MAPK in chorion trophoblast cells (CTCs) is unclear. We tested if eliminating p38 will reduce oxidative stress (OS) induced cell fates like cellular senescence, EMT, and inflammation induced by these processes in CTCs. METHODS: p38MAPK in CTCs was silenced using CRISPR/Cas9. OS was evoked by cigarette smoke extract (CSE) exposure. EMT was evoked by transforming growth factor (TGF)-ß treatment. Cell cycle, senescence, EMT, and inflammation were analyzed. RESULTS: CSE-induced changes in the cell cycle were not seen in p38KO CTCs compared to WT cells. OS induced by CSE evoked senescence and senescence-associated secretory phenotype (SASP as indicated by IL-6 and IL-8 increase) in WT but not in p38MAPK KO CTCs. No changes were noted in HLA-G expression regardless of the status of p38MAPK. Neither CSE nor TGF-ß evoked EMT in either WT or p38 KO CTCs. CONCLUSION: Senescence and senescence-associated inflammation in human fetal CTCs are mediated by p38MAPK. Compared to amnion epithelial cells, CTCs are resistant to EMT. This refractoriness may help them to maintain the barrier functions at the choriodecidual interface.


Asunto(s)
Mitógenos , Trofoblastos , Femenino , Humanos , Mitógenos/metabolismo , Trofoblastos/metabolismo , Células Epiteliales/fisiología , Senescencia Celular , Amnios/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Inflamación/metabolismo
12.
Lab Chip ; 22(23): 4574-4592, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36322152

RESUMEN

Objectives: To improve preclinical drug testing during pregnancy, we developed multiple microfluidic organ-on-chip (OOC) devices that represent the structure, functions, and responses of the two feto-maternal interfaces (FMis) in humans (fetal membrane [FMi-OOC] and placenta [PLA-OOC]). This study utilized feto-maternal interface OOCs to test the kinetics and efficacy of drugs during pregnancy. Study design: The FMi-OOC contained amnion epithelial, mesenchymal, chorion trophoblast, and decidual cells. The PLA-OOC contained cytotrophoblasts (BeWo), syncytiotrophoblasts (BeWo + forskolin), and human umbilical vein endothelial cell lines. Therapeutic concentrations of either pravastatin or rosuvastatin (200 ng mL-1), a model drug for these experiments, were applied to either decidua (in FMi-OOC) and syncytiotrophoblasts (in PLA-OOC) chambers under normal and oxidative stress conditions (induced by cigarette smoke extract [CSE 1 : 25]) to evaluate maternal drug exposure during normal pregnancy or oxidative stress (OS) associated pathologies, respectively. We determined statin pharmacokinetics and metabolism (LC-MS/MS), drug-induced cytotoxicity (LDH assay), and efficacy to reduce OS-induced inflammation (multiplex cytokine assay). Results: Both OOCs mimicked two distinct human feto-maternal interfaces. The drugs tested permeated the maternal-fetal cell layers of the FMi-OOC and PLA-OOC within 4 hours and generated cell and time-specific statin metabolites from various cell types without causing any cytotoxicity. OS-induced pro-inflammatory cytokines were effectively reduced by statins by increasing anti-inflammatory cytokine response across the FMi-OOC and PLA-OOC. Conclusion: Two distinct feto-maternal interface OOCs were developed, tested, and validated for their utility to conduct preclinical trials during pregnancy. We demonstrated that the placenta and fetal membranes-decidual interface both are able to transport and metabolize drugs and that the safety and efficacy of a drug can be determined using the anatomical structures recreated on OOCs.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Embarazo , Femenino , Humanos , Cromatografía Liquida , Espectrometría de Masas en Tándem , Citocinas , Poliésteres
13.
Clin Sci (Lond) ; 136(22): 1591-1614, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36250628

RESUMEN

Oxidative stress (OS) induced activation of p38 mitogen-activated kinase (MAPK) and cell fate from p38 signaling was tested using the human fetal membrane's amnion epithelial cells (AEC). We created p38 KO AEC using the CRISPR/Cas9 approach and tested cell fate in response to OS on an AEC-free fetal membrane extracellular matrix (ECM). Screening using image CyTOF indicated OS causing epithelial-mesenchymal transition (EMT). Further testing revealed p38 deficiency prevented AEC senescence, EMT, cell migration, and inflammation. To functionally validate in vitro findings, fetal membrane-specific conditional KO (cKO) mice were developed by injecting Cre-recombinase encoded exosomes intra-amniotically into p38αloxP/loxP mice. Amnion membranes from p38 cKO mice had reduced senescence, EMT, and increased anti-inflammatory IL-10 compared with WT animals. Our study suggested that overwhelming activation of p38 in response to OS inducing risk exposures can have an adverse impact on cells, cause cell invasion, inflammation, and ECM degradation detrimental to tissue homeostasis.


Asunto(s)
Mitógenos , Proteínas Quinasas p38 Activadas por Mitógenos , Humanos , Ratones , Animales , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Células Epiteliales/metabolismo , Amnios , Inflamación/metabolismo
14.
Front Cell Dev Biol ; 10: 931609, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36046342

RESUMEN

This study determined if exosomes from ectocervical epithelial (ECTO) cells infected with Ureaplasma parvum (U. parvum) can carry bacterial antigens and cause inflammation at the feto-maternal interface using two organ-on-chip devices, one representing the vagina-cervix-decidua and another one mimicking the feto-maternal interface, and whether such inflammation can lead to preterm birth (PTB). Exosomes from U. parvum-infected ECTO cells were characterized using cryo-electron microscopy, nanoparticle tracking analysis, Western blot, and Exoview analysis. The antigenicity of the exosomes from U. parvum-infected ECTO cells was also tested using THP-1 cells and our newly developed vagina-cervix-decidua organ-on-a-chip (VCD-OOC) having six microchannel-interconnected cell culture chambers containing cells from the vagina, ectocervical, endocervical, transformation zone epithelia, cervical stroma, and decidua. The VCD-OOC was linked to the maternal side of our previously developed feto-maternal interface organ-on-a-chip (FMi-OOC). Cell culture media were collected after 48 h to determine the cytokine levels from each cell line via ELISA. For physiological validation of our in vitro data, high-dose exosomes from U. parvum-infected ECTO cells were delivered to the vagina of pregnant CD-1 mice on E15. Mice were monitored for preterm birth (PTB, < E18.5 days). Exosomes from ECTO cells infected with U. parvum (UP ECTO) showed significant downregulation of exosome markers CD9, CD63, and CD81, but contained multiple banded antigen (MBA), a U. parvum virulence factor. Monoculture experiments showed that exosomes from UP ECTO cells delivered MBA from the host cell to uninfected endocervical epithelial cells (ENDO). Moreover, exposure of THP-1 cells to exosomes from UP ECTO cells resulted in increased IL-8 and TNFα and reduced IL-10. The OOC experiments showed that low and high doses of exosomes from UP ECTO cells produced a cell type-specific inflammatory response in the VCD-OOC and FMi-OOC. Specifically, exosomes from UP ECTO cells increased pro-inflammatory cytokines such as GM-CSF, IL-6, and IL-8 in cervical, decidual, chorion trophoblast, and amnion mesenchymal cells. The results from our OOC models were validated in our in vivo mice model. The inflammatory response was insufficient to promote PTB. These results showed the potential use of the VCD-OOC and FMi-OOC in simulating the pathophysiological processes in vivo.

15.
FASEB J ; 36(10): e22551, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36106554

RESUMEN

Genital mycoplasmas can break the cervical barrier and cause intraamniotic infection and preterm birth. This study developed a six-chamber vagina-cervix-decidua-organ-on-a-chip (VCD-OOC) that recapitulates the female reproductive tract during pregnancy with culture chambers populated by vaginal epithelial cells, cervical epithelial and stromal cells, and decidual cells. Cells cultured in VCD-OOC were characterized by morphology and immunostaining for cell-specific markers. We transferred the media from the decidual cell chamber of the VCD-OOC to decidual cell chamber in feto-maternal interface organ-on-a-chip (FMi-OOC), which contains the fetal membrane layers. An ascending Ureaplasma parvum infection was created in VCD-OOC. U. parvum was monitored for 48 h post-infection with their cytotoxicity (LDH assay) and inflammatory effects (multiplex cytokine assay) in the cells tested. An ascending U. parvum infection model of PTB was developed using CD-1 mice. The cell morphology and expression of cell-specific markers in the VCD-OOC mimicked those seen in lower genital tract tissues. U. parvum reached the cervical epithelial cells and decidua within 48 h and did not cause cell death in VCD-OOC or FMi-OOC cells. U. parvum infection promoted minimal inflammation, while the combination of U. parvum and LPS promoted massive inflammation in the VCD-OOC and FMi-OOC cells. In the animal model, U. parvum vaginal inoculation of low-dose U. parvum did not result in PTB, and even a high dose had only some effects on PTB (20%). However, intra-amniotic injection of U. parvum resulted in 67% PTB. We report the colonization of U. parvum in various cell types; however, inconsistent, and low-grade inflammation across multiple cell types suggests poor immunogenicity induced by U. parvum.


Asunto(s)
Nacimiento Prematuro , Infecciones por Ureaplasma , Animales , Cuello del Útero , Decidua , Femenino , Humanos , Recién Nacido , Inflamación , Dispositivos Laboratorio en un Chip , Ratones , Embarazo , Ureaplasma , Vagina
16.
Life (Basel) ; 12(2)2022 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-35207454

RESUMEN

During pregnancy, the placenta is established as a primary organ for drug transport at the maternal-fetal interface. The fetal membranes (FM) also form an interface with maternal tissues; however, their role in drug transport has not been previously investigated. Knowledge of drug transport across this feto-maternal interface along with the placenta can improve new drug development and testing for use during pregnancy. We also hypothesize that extracellular vesicles (exosomes 30-160 nm) released from the FM and placental cells may also contain drug transport proteins and might impact drug trafficking across the feto-maternal interfaces. The objectives were to (1) localize the breast cancer resistance protein (BCRP) in human FM; (2) determine the drug transport function of BCRP in chorion trophoblast cells (CTCs) of the FM; and (3) investigate the presence of BCRP in FM cell-derived exosomes, as a paracrine modifier of the tissue environment for transport functions. The gene and protein expressions of ABCG2/BCRP in FMs were determined by quantitative real-time PCR (qRT-PCR) and western blotting (WB) and were localized by immunohistochemistry (IHC). The surface expression of BCRP in FM cells was determined by flow cytometry. The functional role of BCRP was assessed by an EFFLUX dye multidrug resistance assay. The presence of BCRP in exosomes derived from CTCs and BeWo cells was examined using ExoView®. Data derived from CTCs are compared with placental trophoblast cells (BeWo). BCRP is expressed and localized in the fetal membrane, primarily in the chorion trophoblast cell layer and scarcely in the amnion epithelial layer (AEC), and primarily localized on both AEC and CTC cell surfaces. Efflux assay data showed that FM cells have similar drug resistance activity as BeWo cells, suggesting that FM also have drug transportation capabilities. BeWo- and CTC-derived exosomes expressed limited BCRP protein on the surface, so it was predominantly contained in the exosomal lumen. As far as we are aware, this is the first study to report BCRP expression in fetal membrane cells and as cargo in fetal membrane-derived exosomes. We report that fetal membrane cells are capable of drug transportation. Based on these results, investigational drug trials should include the FM and its exosomes as possible drug transportation routes in pregnancy.

17.
Am J Reprod Immunol ; 87(3): e13521, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35007379

RESUMEN

OBJECTIVE: This study determined the cord plasma-derived extracellular vesicle (exosomes; 30-160 nm particles) proteomic profile in patients who had spontaneous preterm birth (PTB) or preterm premature rupture of membranes (pPROM), compared to those who delivered at term regardless of labor status. METHODS: This is a cross-sectional analysis of a retrospective cohort that quantified and determined the proteomic cargo content of exosomes present in cord blood plasma samples in PTB or pPROM, and normal term in labor (TL) or term not in labor (TNIL) pregnancies. Exosomes were isolated by differential centrifugation followed by size exclusion chromatography. Exosomes were characterized by nanoparticle tracking analysis (quantity and size) and markers (dot blots for exosome markers). The exosomal proteomic profile was identified by liquid chromatography-mass spectrometry (LC-MS/MS). Ingenuity pathway analysis determined canonical pathways and biofunctions associated with dysregulated proteins. RESULTS: Cord plasma exosomes have similar quantity and exhibit both tetraspanin and ESCRT protein markers specific of exosomes regardless of the conditions. Proteomics analysis exhibited several similar markers as well as very unique markers in exosomes from each condition; however, bioinformatics analysis revealed a generalized and non-specific inflammatory condition represented in exosomes from different condition that is not indicative of any specific underlying biological functions indicative of an underlying pathology. CONCLUSIONS: Compared to maternal plasma and amniotic fluid exosomes, the value of cord plasma derived exosomes is limited. Quantity, character, and proteomic cargo contents in exosomes or the pathways and functions represented by differentially expressed proteins do not distinguish specific conditions regarding normal and abnormal parturition. The value of cord plasma exosome proteomic cargo has limited value as an indicator of an underlying physiology or as a biomarker of fetal well-being.


Asunto(s)
Exosomas , Vesículas Extracelulares , Nacimiento Prematuro , Cromatografía Liquida , Estudios Transversales , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Femenino , Sangre Fetal/metabolismo , Humanos , Recién Nacido , Embarazo , Nacimiento Prematuro/metabolismo , Proteómica , Estudios Retrospectivos , Espectrometría de Masas en Tándem , Nacimiento a Término
18.
J Hazard Mater ; 422: 126759, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34391970

RESUMEN

Human labor is associated with feto-maternal-derived signals that coordinate to initiate delivery. Exposure to environmental chemicals can prematurely trigger labor-initiating signals at the feto-maternal interface (FMi: decidua, amniochorion), leading to spontaneous preterm birth (PTB). Testing the association between environmental chemical exposure and PTB is difficult due to many limitations in vivo or in vitro. Physiological organ-on-chips (OOCs) are potential alternatives for studying mechanisms leading to PTB. The presented study tested the effect of maternal exposure to cadmium (Cd), an environmental toxin, using the FMi-OOC that incorporates maternal decidua cells and three different fetal cells (chorion, amnion mesenchymal, and amnion epithelial cells). Cd transport through the FMi and its impact on cell cycle, cell death, and inflammation were analyzed. Cd treatment resulted in significant cell death and a pro-inflammatory environment in the maternal decidua, but had minimal effect on the fetal chorion cells, and no effect in the fetal amnion cells compared to controls. The maternal response, but lack of fetal response, indicates that Cd-mediated adverse effects originate from maternal pathophysiology rather than fetal-derived triggers of preterm labor. This study demonstrates that the FMi-OOC can indeed predict the response of FMi upon exposure to chemicals, opening the possibility for using OOC models for environmental toxin screens.


Asunto(s)
Decidua , Nacimiento Prematuro , Amnios , Cadmio/toxicidad , Corion , Femenino , Humanos , Recién Nacido , Embarazo , Nacimiento Prematuro/inducido químicamente
19.
Biol Reprod ; 106(3): 568-582, 2022 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-34935931

RESUMEN

Human fetal membrane and maternal decidua parietalis form one of the major feto-maternal interfaces during pregnancy. Studies on this feto-maternal interface is limited as several investigators have limited access to the placenta, and experience difficulties to isolate and maintain primary cells. Many cell lines that are currently available do not have the characteristics or properties of their primary cells of origin. Therefore, we created, characterized the immortalized cells from primary isolates from fetal membrane-derived amnion epithelial cells, amnion and chorion mesenchymal cells, chorion trophoblast cells and maternal decidua parietalis cells. Primary cells were isolated from a healthy full-term, not in labor placenta. Primary cells were immortalized using either a HPV16E6E7 retroviral or a SV40T lentiviral system. The immortalized cells were characterized for the morphology, cell type-specific markers, and cell signalling pathway activation. Genomic stability of these cells was tested using RNA seq, karyotyping, and short tandem repeats DNA analysis. Immortalized cells show their characteristic morphology, and express respective epithelial, mesenchymal and decidual markers similar to that of primary cells. Gene expression of immortalized and primary cells were highly correlated (R = 0.798 to R = 0.974). Short tandem repeats DNA analysis showed in the late passage number (>P30) of cell lines matched 84-100% to the early passage number (

Asunto(s)
Decidua , Membranas Extraembrionarias , Biología , Línea Celular , Corion , Decidua/metabolismo , Membranas Extraembrionarias/metabolismo , Femenino , Humanos , Placenta/metabolismo , Embarazo
20.
PLoS One ; 16(12): e0260370, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34855804

RESUMEN

BACKGROUND: Microbial invasion of the intraamniotic cavity and intraamniotic inflammation are factors associated with spontaneous preterm birth. Understanding the route and kinetics of infection, sites of colonization, and mechanisms of host inflammatory response is critical to reducing preterm birth risk. OBJECTIVES: This study developed an animal model of ascending infection and preterm birth with live bacteria (E. coli) in pregnant CD-1 mice with the goal of better understanding the process of microbial invasion of the intraamniotic cavity and intraamniotic inflammation. STUDY DESIGN: Multiple experiments were conducted in this study. To determine the dose of E. coli required to induce preterm birth, CD-1 mice were injected vaginally with four different doses of E. coli (103, 106, 1010, or 1011 colony forming units [CFU]) in 40 µL of nutrient broth or broth alone (control) on an embryonic day (E)15. Preterm birth (defined as delivery before E18.5) was monitored using live video. E. coli ascent kinetics were measured by staining the E. coli with lipophilic tracer DiD for visualization through intact tissue with an in vivo imaging system (IVIS) after inoculation. The E. coli were also directly visualized in reproductive tissues by staining the bacteria with carboxyfluorescein succinimidyl ester (CFSE) prior to administration and via immunohistochemistry (IHC) by staining tissues with anti-E. coli antibody. Each pup's amniotic fluid was cultured separately to determine the extent of microbial invasion of the intraamniotic cavity at different time points. Intraamniotic inflammation resulting from E. coli invasion was assessed with IHC for inflammatory markers (TLR-4, P-NF-κB) and neutrophil marker (Ly-6G) for chorioamnionitis at 6- and 24-h post-inoculation. RESULTS: Vaginally administered E. coli resulted in preterm birth in a dose-dependent manner with higher doses causing earlier births. In ex vivo imaging and IHC detected uterine horns proximal to the cervix had increased E. coli compared to the distal uterine horns. E. coli were detected in the uterus, fetal membranes (FM), and placenta in a time-dependent manner with 6 hr having increased intensity of E. coli positive signals in pups near the cervix and in all pups at 24 hr. Similarly, E. coli grew from the cultures of amniotic fluid collected nearest to the cervix, but not from the more distal samples at 6 hr post-inoculation. At 24 hr, all amniotic fluid cultures regardless of distance from the cervix, were positive for E. coli. TLR-4 and P-NF-κB signals were more intense in the tissues where E. coli was present (placenta, FM and uterus), displaying a similar trend toward increased signal in proximal gestational sacs compared to distal at 6 hr. Ly-6G+ cells, used to confirm chorioamnionitis, were increased at 24 hr compared to 6 hr post-inoculation and control. CONCLUSION: We report the development of mouse model of ascending infection and the associated inflammation of preterm birth. Clinically, these models can help to understand mechanisms of infection associated preterm birth, determine targets for intervention, or identify potential biomarkers that can predict a high-risk pregnancy status early in pregnancy.


Asunto(s)
Nacimiento Prematuro , Animales , Corioamnionitis/microbiología , Escherichia coli , Femenino , Ratones , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...